skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Henke, Austin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Currently, there is a lack of knowledge of how complex metal oxide nanomaterials, like LiCoO2 (LCO) nanosheets, interact with eukaryotic green algae. Previously, LCO was reported to cause a number of physiological impacts to Raphidocelis subcapitata including endpoints related to growth, reproduction, pigment & lipid biosynthesis, and carbon biomass assimilation. Furthermore, LCO was proven to physically enter the cells, thus indicating the possibility for it to directly interact with key subcellular components. However, the mechanisms through which LCO interacts with these key subcellular components is still unknown. This study assesses the interactions of LCO at the biointerface of R. subcapitata using a novel multiplexed algal cytological imaging (MACI) assay and machine learning in order to predict its phytotoxic mechanism of action (MoA). Algal cells were exposed to varying concentrations of LCO, and their phenotypic profiles were compared to that of cells treated with reference chemicals which had already established MoAs. Hierarchical clustering and machine learning analyses indicated photosynthetic electron transport to be the most probable phytotoxic MoA of LCO. Additionally, single-cell chlorophyll fluorescence results demonstrated an increase in irreversibly oxidized photosystem II proteins. Lastly, LCO-treated cells were observed to have less nuclei/cell and less DNA content/nucleus when compared to non-treated cell controls. 
    more » « less
  2. High-valent metal oxides such as LiCoO2 and related materials are of increasing environmental concern due to the large-scale use in lithium-ion batteries and potential for metal ion release into aqueous systems. A key aspect of the environmental chemistry of these materials is the potential role redox chemistry plays in their transformations as well as their influence on the surrounding environment (i.e., biomolecules, organisms etc.). In recent work, we showed that LiCoO2(a common lithium-ion battery cathode material) oxidizes nicotinamide adenine dinucleotide (NADH), an essential molecule for electron transport, and enhances Co release from LiCoO2. In the present work, we investigated the mechanism of interaction by examining the role of the ribose, phosphate, adenosine, and the nicotinamide components of NADH in the transformation of LiCoO2 nanoparticles. To build an understanding of the interaction mechanism, we used fluorescence spectroscopy to measure the changes in redox state and inductively coupled plasma-mass spectrometry (ICP-MS) to measure the changes in dissolved Co. Our results reveal the importance of surface binding, via the phosphate functionality, in initiating the redox transformation of both the LiCoO2 and the NADH. Observations from X-ray photoelectron spectroscopy (XPS) data show that molecules containing phosphate were bound to the surface of the nanoparticles and those without that functionality were not. We further established the generality of the results with LiCoO2 by examining other high-valent transition metal oxides. This surface binding effect has implications for understanding how other phosphorylated species can be transformed directly in the presence of high-valent metal oxide nanomaterials. 
    more » « less
  3. Complex metal oxide nanomaterials, like LiCoO2 (LCO) nanosheets, are among the most widespread classes of nanomaterials on the market. Their ubiquitous application in battery storage technology drives their production to rates of environmental significance without sufficient infrastructure for proper disposal/recycling, thus posing a risk to ecosystem health and sustainability. This study assesses the general toxicological impacts of LCO when exposed to Raphidocelis subcapitata; physiological endpoints relating to growth and energy production are considered. Algal growth inhibition was significantly increased at concentrations as low as 0.1 µg·mL?1, while exhibiting an EC50 of 0.057 µg·mL?1. The average biovolume of cells were significantly enlarged at 0.01 µg·mL?1, thus indicating increased instances of cell cycle arrest in LCO-treated cells. Additionally, LCO-treated cells produced significantly less carbon biomass while significantly overproducing neutral lipid content starting at 0.1 µg·mL?1, thus indicating interference with CO2 assimilation chemistry and/or carbon partitioning. However, the relative abundance of chlorophyll was significantly increased, likely to maximize light harvesting and compensate for photosynthetic interference. Cells that were treated with dissolved Li+/Co2+ ions did not significantly impact any of the endpoints tested, suggesting LCO phytotoxicity is mainly induced through nano-specific mechanisms rather than ion-specific. These results indicate that this type of nanomaterial can significantly impact the way this algae proliferates, as well as the way it produces and stores its energy, even at lower, sublethal, concentrations. Furthermore, impairments to crucial cellular pathways, like carbon assimilation, could potentially cause implications at the ecosystem level. Thus, in future work, it will be important to characterize the molecular mechanisms of LCO at the nano-bio interface.This article is protected by copyright. All rights reserved. Environ Toxicol Chem 2023;00:0?0. ? 2023 SETAC. 
    more » « less
  4. null (Ed.)
    Among high-valence metal oxides, LiCoO 2 and related materials are of environmental importance because of the rapidly increasing use of these materials as cathodes in lithium ion batteries. Understanding the impact of these materials on aqueous environments relies on understanding their redox chemistry because Co release is dependent on oxidation state. Despite the critical role that redox chemistry plays in cellular homeostasis, the influence of specific biologically relevant electron transporters such as nicotinamide adenine dinucleotide (NADH) and glutathione (GSH) on the transformation of engineered nanoparticles has not been widely considered previously. Here we report an investigation of the interaction of LiCoO 2 nanoparticles with NADH and GSH. Measurements of Co release using inductively coupled plasma-mass spectrometry (ICP-MS) show that exposing LiCoO 2 nanoparticles to either NADH or GSH increases solubilization of cobalt, while corresponding spectroscopic measurements show that NADH is concurrently oxidized to NAD + . To demonstrate that these effects are a consequence the high-valence Co(III) inLiCoO 2 nanoparticles, we performed control experiments using Co(II)-containing Co(OH) 2 and LiCoPO 4 , and dissolved Co 2+ /Li + ions. Additional experiments using molecules of similar structure to NADH and GSH, but that are not reducing agents, confirm that these transformations are driven by redox reactions and not by chelation effects. Our data show that interaction of LiCoO 2 with NADH and GSH induces release Co 2+ ions and alters the redox state of these biologically important transporters. Observation of NADH binding to LiCoO 2 using x-ray photoelectron spectroscopy (XPS) suggests a surface catalyzed reaction. The reciprocal reduction of LiCoO 2 to enable release of Co 2+ and corresponding oxidation of NADH and GSH as model redox-active biomolecules has implications for understanding the biological impacts of high-valence metal oxide nanomaterials. 
    more » « less
  5. null (Ed.)
    Lithium cobalt oxide (LiCoO 2 ), an example of nanoscale transition metal oxide and a widely commercialized cathode material in lithium ion batteries, has been shown to induce oxidative stress and generate intracellular reactive oxygen species (ROS) in model organisms. In this study, we aimed to understand the time-dependent roles of abiotic ROS generation and Co ions released in aqueous medium by LiCoO 2 NPs, and examined the induced biological responses in model bacterium, B. subtilis upon exposure. We found that the redox-active LiCoO 2 NPs produced abiotic ROS primarily through H 2 O 2 generation when freshly suspended. Subsequently, the freshly-suspended LiCoO 2 NPs induced additional DNA breakage, and changes in expression of oxidative stress genes in B. subtilis that could not be accounted for by the released Co ions alone. Notably, in 48 hour old LiCoO 2 suspensions, H 2 O 2 generation subsided while higher concentrations of Co ions were released. The biological responses in DNA damage and gene expression to the aged LiCoO 2 NPs recapitulated those induced by the released Co ions. Our results demonstrated oxidative stress mechanisms for bacteria exposed to LiCoO 2 NPs were mediated by the generation of distinct biotic and abiotic ROS species, which depended on the aqueous transformation state of the NPs. This study revealed the interdependent and dynamic nature of NP transformation and their biological consequences where the state of NPs resulted in distinct NP-specific mechanisms of oxidative injury. Our work highlights the need to capture the dynamic transformation of NPs that may activate the multiple routes of oxidative stress responses in cells. 
    more » « less
  6. Lithium intercalation compounds, such as the complex metal oxide, lithium nickel manganese cobalt oxide (LiNi x Mn y Co 1−x−y O 2 , herein referred to as NMC), have demonstrated their utility as energy storage materials. In response to recent concerns about the global supply of cobalt, industrially synthesized NMCs are shifting toward using NMC compositions with enriched nickel content. However, nickel is one of the more toxic components of NMC materials, meriting investigation of the toxicity of these materials on environmentally relevant organisms. Herein, the toxicity of both nanoscale and microscale Ni-enriched NMCs to the bacterium, Shewanella oneidensis MR-1, and the zooplankton, Daphnia magna , was assessed. Unexpectedly, for the bacteria, all NMC materials exhibited similar toxicity when used at equal surface area-based doses, despite the different nickel content in each. Material dissolution to toxic species, namely nickel and cobalt ions, was therefore modelled using a combined density functional theory and thermodynamics approach, which showed an increase in material stability due to the Ni-enriched material containing nickel with an oxidation state >2. The increased stability of this material means that similar dissolution is expected between Ni-enriched NMC and equistoichiometric NMC, which is what was found in experiments. For S. oneidensis , the toxicity of the released ions recapitulated toxicity of NMC nanoparticles. For D. magna , nickel enrichment increased the observed toxicity of NMC, but this toxicity was not due to ion release. Association of the NMC was observed with both S. oneidensis and D. magna. This work demonstrates that for organisms where the major mode of toxicity is based on ion release, including more nickel in NMC does not impact toxicity due to increased particle stability; however, for organisms where the core composition dictates the toxicity, including more nickel in the redesign strategy may lead to greater toxicity due to nanoparticle-specific impacts on the organism. 
    more » « less